World Data Centre for Aerosol: Status & News 2019

Fiebig, M.; Tørseth, K. and the EBAS-team WDCA at the Norwegian Institute for Air Research

Items Covered

- WDCA setup, features, services
- WDCA Status: Key numbers and figures
 - Stations Reporting
 - Access Statistics
- Involvement in EU project ENVRI-FAIR
 - Data citation service (DOI for data)
 - Inter-operability (connection to portals, etc.)

Data Levels: Implementing Traceability

Data Level	Manual QC	RRT/ auto QC	Description	
0	0a	Ob	 Annotated raw data format instrument specific all data / information for processing to final value. 	 contains all parameters provided by instrument as provided "native" time resolution
1	1a	1b	 processed to final parameter invalid data removed "native" time resolution 	 format property specific STP correction if necessary
1.5 / 2	2	1.5	 aggregated to hourly averages variability quantified 	format property specific

• SOP describes steps from one to the next level.

WMO GAW ET-WDC meeting 2019, 1-3 October, Hampton (VA), USA

NILU

WMO

WMO

NILL

WMO

WMO

WMO GAW ET-WDC meeting 2019, 1-3 October, Hampton (VA), USA

Observations with Reporting Support

Regular / Traceable:

- Particle number concentration
- Particle number size distribution (sub-micron) (NRT)
- Cloud Condensation Particle Number Conc. / Size dist.
- Scattering Coefficient (NRT)
- Absorption Coefficient (NRT)

Regular only:

- Aerosol optical depth (NRT)
- PM mass (gravimetric)
- PM mass (online)
- Particle number size distribution (super-micron, OPC, APS)
- Aerosol Chemical Composition (GAW standard, co-ordinated with EMEP)
- Aerosol Chemical Speciation (online, AMS / ACSM)
- OC / EC concentration

recently added:

• Met. base paramaters

Stations Reporting, by Year

- Stable basis of ≈ 80 reporting stations
- Some fluctuation in stations

Station / Instruments Reported, by Year

Stable at about 200 Instruments reporting per year.

Instruments Reporting, by Year

- Most frequent instrument types measure particle scattering and absorption, i.e. optical aerosol properties.
- Reflects GAW aerosol focus on climate effects.
- Stable numbers.

Number of RT Stations & Instruments, by Year

- WDCA has been providing a stable RT data service for 10 years.
- Stable number of participating stations and instruments.
- Decrease in 2015 due to GAW AOD instruments.

Coverage for: RRT Instruments, Active Stations

- Global coverage with surface in situ aerosol • observations.
- 45 instruments at 32 stations ٠
- "White areas" in South America, Africa, Central and ٠ South-West Asia.

Station / Instrument Years Provided, per Country

- Graph shows only part of 44 countries in total.
- Largest contribution by US (NOAA), 997 instrument years.
- Due long-running own station network.
- European countries contribute ≈2000 instrument years.
- In total 3544 instrument years.

Data Access: Unique Client IPs per Month

180 160 140 120 100 PLOT 80 DOWNLOAD 60 DISP 40 20 0 2009105 2010101 12010/092011/052012/012092013/052014/012014/092015/052016/012016/092017/052018/012018/092019/05

Data Access: #Unique client IPs (WDCA)

- Client IPs closest proxy to number of users w/o requiring login.
- One IP may hide 10s++ users (e.g. NOAA has 1 IP)
- One user may use different IPs (office, home, ...)
- Between 80-120 unique IPs per month.

Data Access: Instrument/Component Years per Month

Data Acess: Instrument/Component Years (WDCA)

- On average, 1700 instrument years accessed each month.
- Modulated by holidays (lows) and large climatology studies (highs).

Data Access: Instrument/Component Years by Country Ever

- Active delivery: delivery to collaborating initiatives, e.g. AeroCom
- Largest providers are also largest users.
- 72 user countries in total.

Data Access: Instrument/Component Years by Organisation Type

- Research largest user group.
- Provider / hoster: private access points
- Active delivery and provider / hoster also mostly reasearch

Data Access: Access Events per Month by Instrument Type

 Most access events for CPC (particle number concentration) and nephelometer (scattering coeff.)

Involvement in Ongoing EU-Projects

ENVRI-FAIR:

- Umbrella project for European environmental research infrastructures (RIs).
- Collaboration between topical data managers and information scientists.
- Objective to implement data FAIRness across Ris.

NextGEOSS:

- EU project providing European contribution to GEOSS.
- European GAW components participate.
- Work on inter-operability, i.e. standards for sharing metadata and data (interfaces, vocabulary, ...).
- Work on pilot of a Cold Region data portal.

What Are the FAIR Principles?

Designed by FORCE 11 (open data advocate-) group to describe the general requirements that "Open Data" should meet.

Consist of four main points. Data should be:

- **F**indable:
 - (meta)data have <u>globally unique and persistent</u> <u>identifier</u>
 - data are described with rich metadata
 - (meta)data are indexed in a searchable resource
 - metadata <u>specify</u> the data identifier
- Accessible
 - (meta)data are <u>retrievable by their identifier</u> using <u>a</u> <u>standardized communications protocol</u>
 - <u>metadata are accessible</u>, even when the data are no longer available.

- Interoperable
 - (meta)data use a <u>formal, accessible, shared, and</u> <u>broadly applicable language</u> for knowledge representation.
 - (meta)data use <u>vocabularies that follow FAIR</u> <u>principles.</u>
 - (meta)data include <u>qualified references</u> to other (meta)data
- **R**e-usable
 - (meta)data are with <u>data usage license.</u>
 - (meta)data are associated provenance.
 - (meta)data <u>meet domain-relevant community</u> <u>standards</u>

ENVRI-FAIR Atospheric Subdomain Implementation Plan

Tasks for immediate implementation:

- 1. Consolidation of consistent use of PIDs throughout data production workflow.
 - DOIs for final data products
 - <u>Persistent Identifiers for eResearch (ePIC) PIDs for other identifiable items</u>
- 2. Common standard interfaces for metadata and data
 - At interface level!
 - Metadata: 1) Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) interface serving metadata in ISO19115 format with WMO Information System (WIS) profile; 2)
 Open Geospatial Consortium (OGC) Catalogue Service for the Web (CSW)
 - **Data**: depending on data type: OPeNDAP, OGC-WCS, OGC-WMS
- 3. Indexing of data resources in WIS, GEOSS
 - Priority to these, as compared to e.g. Google Dataset Search.

ENVRI-FAIR Atospheric Subdomain Implementation Plan

Tasks for immediate implementation planning:

- 1. Domain vocabulary / ontology for observed parameters, discovery and use metadata.
 - Dataset-centric scope
 - Use existing, widely used, well-maintained vocabulary wherever possible
 - Identify gaps and extend where necessary
- 2. Common use of authentication schemes
 - Candidates: Google ID, eduGAIN (GÉANT), B2ACCESS (EUDAT), ORCID
- 3. Consistent documentation of provenance throughout data production workflow
 - Based on deliverable of ENVRI+ predecessor project.
- 4. Recommendations for licenses on metadata and data
 - Provide overview of (meta)data licenses currently in use in atm. subdomain
 - Provide recommendation.
- 5. Semantic search for atmospheric ENVRI RI user interfaces
 - Describing and reviewing the state of the art in semantic search interfaces
 - Describing typical use case scenarios and their demands
 - Reviewing and giving recommendations on implementation technologies.

An Approach To Data Identification and Use Quantification

DIOs can be used in 2 ways (at least):

- Identification of all data archived at fixed granularity in primary archive: provides quantifiable credit to data provider. ISSUE: Granularity varies
- 2. Identification of user selected data collections: provides ease of use of data

Approach in 3 Functionalities:

- Primary identification of all data in a repository with homogeneous granularity, resolution fine enough to resolve single data originator
- Type 2 DOIs need to link correctly to type 1 DOIs to facilitate correct accounting of data use link in metadata.
- Data use accounting service provided by primary archive by resolving collection DOIs for budgeting data use on primary DOI granularity.

